A Hierarchical Approach to Monadic Second-Order Logic over Graphs
نویسنده
چکیده
The expressiveness of existential monadic second-order logic is investigated over several classes of nite graphs among them the graphs of bounded tree-width. A hierarchical approach to the decomposition of graphs is introduced which is related to the notion of tree decomposition. Among other results we show that existential monadic second-order logic on graphs of bounded tree-width is not closed under complement.
منابع مشابه
A Hierarchical Approach to Graph Automata and Monadic Second-Order Logic over Graphs
A hierarchical approach to the decomposition of graphs is introduced which is related to the notion of tree decomposition. On this basis a hierarchical automaton model for graphs is deened. We show that this automaton model is (relative to an appropriate class of graphs) equivalent to monadic second-order logic in expressive power, properly strengthening previous results on monadic second-order...
متن کاملThe Monadic Second-Order Logic of Graphs XI: Hierarchical Decompositions of Connected Graphs
We prove that the unique decomposition of connected graphs defined by Tutte is definable by formulas of Monadic Second-Order Logic. This decomposition has two levels: every connected graph is a tree of "2-connected components" called blocks ; every 2-connected graph is a tree of so-called 3-blocks. Our proof uses 2dags which are certain acyclic orientations of the considered graphs. We obtain a...
متن کاملGraph equivalences and decompositions definable in Monadic Second-Order Logic. The case of Circle Graphs
Many graph properties and graph transformations can be formalized inMonadic Second-Order logic. This language is the extension of First-Order logic allowing variables denoting sets of elements. In the case of graphs, these elements can be vertices, and in some cases edges. Monadic second-order graph properties can be checked in linear time on the class of graphs of tree-width at most k for any ...
متن کاملThe Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs
This paper begins an investigation of the monadic second-order logic of graphs and of sets of graphs, using techniques from universal algebra, and the theory of formal languages. (By a graph, we mean a finite directed hyperedge-labelled hypergraph, equipped with a sequence of distinguished vertices.) A survey of this research can be found in Courcelle [ 111. An algebraic structure on the set of...
متن کاملRandom graphs in the monadic theory of order
We continue the works of Gurevich-Shelah and Lifsches-Shelah by showing that it is consistent with ZFC that the first-order theory of random graphs is not interpretable in the monadic theory of all chains. It is provable from ZFC that the theory of random graphs is not interpretable in the monadic second order theory of short chains (hence, in the monadic theory of the real line). We are intere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997